在自然科学的许多领域中,很多现象是用抛物型方程或方程组描述的.如热传导以及其它扩散现象、化学反应、某些生物形态、各种粒子的输运等等.由于许多问题规模较大,因此,用并行算法数值求解抛物型偏微分方程问题具有重要的理论意义和应用价值.古典显式具有理想的并行性,非常适合于并行计算,但它是条件稳定的,特别是在多维问题中,计算的时间步长受到苛刻的限制.古典隐式和Crank-Niclson格式是绝对稳定的,但需要求解带状方程组,不便于直接和有效地在并行机上应用.因此,需要发展具有良好稳定性、并行性和计算精度的新的差分方法.在上世纪80年代,Evans和Abdullah设计的交替分组显式(AGE)方法不但保证了数值计算的稳定性,并且由于显式求解而使该方法有很好的并行性质.这项工作说明建立满足上述要求的新的差分格式是可能的.区域分解法是一类特别适合于并行计算的偏微分方程数值求解方法.它的基本思想是将方程的求解区域分解为若干规则的子区域,将原问题的求解转化为在各子区域上求解.这样的算法是高度并行的,因为计算的主要步骤是在各子区域内独立进行的.本文利用求解椭圆型方程的一种不重叠区域分解法,即D-N交替法的迭代思想构造出了求解抛物型方程的新的并行算法.新算法是建立在抛物型方程差分网格分解基础上的一种离散区域分解算法,即将求解区域的部分网格分解成几个子区域,在各子区域上建立相应的离散差分格式,子区域内边界节点处的离散格式由D-N交替法中Neumann条件推导得出,其恰好是一种Saul’vev非对称格式.同时新算法在相邻的时间层运用交替技巧,从而保证了算法的稳定性.新算法中各子区域之间相互独立,可以并行计算.文中给出了新算法的稳定性证明和截断误差分析.最后的数值实验表明本文给出的新算法是行之有效的.
本文来源: https://www.lw50.cn/article/b445eced604f9a2e69a9b93e.html