Banach空间中的非线性脉冲积微分系统和最优控制
论文摘要
在本文中,用算子半群理论较系统地研究了无穷维Banach空间X中带无界算子的非线性脉冲积微分系统和最优控制。即讨论下列三类积微分方程:(a)单纯型时变非线性脉冲积微分方程(b)混合型非线性脉冲积微分方程(c)混合型时变非线性脉冲积微分方程其中∧={t1,t2,…,tn}(?)(0,T),0=t0<t1<t2<…<tn<tn+1=T,A是C0-半群的无穷小生成元,{A(t)|t∈[0,T]}是闭稠定线性算子族,积分算子G和S是非线性算子,Ji(i=1,2,…,n)是一非线性映射,△x(ti)=x(ti+0)-x(ti-0)=x(ti+0)-x(ti),且Ji决定了状态x在ti时刻的跃度。对方程(1),在分数次幂空间中给出了PC-α-温和解的存在唯一性以及对初值的连续依赖性,相应的Bolza问题最优控制的存在性,并导出了最优化条件。在方程(2)中,为了克服混合型积分算子S的困难,建立同时带脉冲、混合型积分算子的Gronwall不等式和Banach空间PC([0,T],X)中的Ascoli-Arzela定理,用Leray-Schauder不动点定理证明了PC-温和解的存在性。同时证明了一类Lagrange问题的最优容许对的存在性。最后,一个例子展示了我们的结果。对方程(3),在分数次幂空间中建立带脉冲、混合型积分算子和奇性的Gronwall不等式,证明了PC-α-温和解的存在性,也证明一类Lagrange问题的最优容许对的存在性。最后,用一个例子展示了我们的结果。
论文目录
Abstract摘要1 Introduction1.1 Background1.2 Review on Integro-Differentia Equations1.3 Main Work1.4 Organization of the Thesis2 Mathematical Preliminaries0—Semigroup'>2.1 Basic Theory of C0—Semigroup2.2 Parabolic Evolution Operator2.3 Evolution Equations2.4 Partial Differential Equations2.5 Some Important Theorems3 Nonlinear Impulsive Integral Differential Equations with Time Varying Generating Operators and Optimal Control3.1 Preliminaries3.2 The Existence of Mild Solutions of Integro-Differential Equations3.3 Existence of Optimal Controls3.4 Necessary Conditions of Optimality3.5 Example4 Nonlinear Impulsive Integral Differential Equations of Mixed Type and Optimal Control4.1 Preliminaries4.2 Existence of the Solution of Integra-Differential Equations of Mixed Type4.3 Existence of Optimal Controls5 Nonlinear Impulsive Time-Varying Integro-Differential Equations of Mixed Type and Optimal Control5.1 Preliminaries5.2 Existence of the Solutions of Integro-Differential Equations of Mixed Type5.3 Existence of Optimal Controls6 Conclusions and Further WorkAcknowledgementsBibliographyPublications
相关论文文献
本文来源: https://www.lw50.cn/article/eecdf7d507785c7a5326b8fe.html