Print

Banach空间中的非线性脉冲积微分系统和最优控制

论文摘要

在本文中,用算子半群理论较系统地研究了无穷维Banach空间X中带无界算子的非线性脉冲积微分系统和最优控制。即讨论下列三类积微分方程:(a)单纯型时变非线性脉冲积微分方程(b)混合型非线性脉冲积微分方程(c)混合型时变非线性脉冲积微分方程其中∧={t1,t2,…,tn}(?)(0,T),0=t0<t1<t2<…<tn<tn+1=T,A是C0-半群的无穷小生成元,{A(t)|t∈[0,T]}是闭稠定线性算子族,积分算子G和S是非线性算子,Ji(i=1,2,…,n)是一非线性映射,△x(ti)=x(ti+0)-x(ti-0)=x(ti+0)-x(ti),且Ji决定了状态x在ti时刻的跃度。对方程(1),在分数次幂空间中给出了PC-α-温和解的存在唯一性以及对初值的连续依赖性,相应的Bolza问题最优控制的存在性,并导出了最优化条件。在方程(2)中,为了克服混合型积分算子S的困难,建立同时带脉冲、混合型积分算子的Gronwall不等式和Banach空间PC([0,T],X)中的Ascoli-Arzela定理,用Leray-Schauder不动点定理证明了PC-温和解的存在性。同时证明了一类Lagrange问题的最优容许对的存在性。最后,一个例子展示了我们的结果。对方程(3),在分数次幂空间中建立带脉冲、混合型积分算子和奇性的Gronwall不等式,证明了PC-α-温和解的存在性,也证明一类Lagrange问题的最优容许对的存在性。最后,用一个例子展示了我们的结果。

论文目录

  • Abstract
  • 摘要
  • 1 Introduction
  • 1.1 Background
  • 1.2 Review on Integro-Differentia Equations
  • 1.3 Main Work
  • 1.4 Organization of the Thesis
  • 2 Mathematical Preliminaries
  • 0—Semigroup'>2.1 Basic Theory of C0—Semigroup
  • 2.2 Parabolic Evolution Operator
  • 2.3 Evolution Equations
  • 2.4 Partial Differential Equations
  • 2.5 Some Important Theorems
  • 3 Nonlinear Impulsive Integral Differential Equations with Time Varying Generating Operators and Optimal Control
  • 3.1 Preliminaries
  • 3.2 The Existence of Mild Solutions of Integro-Differential Equations
  • 3.3 Existence of Optimal Controls
  • 3.4 Necessary Conditions of Optimality
  • 3.5 Example
  • 4 Nonlinear Impulsive Integral Differential Equations of Mixed Type and Optimal Control
  • 4.1 Preliminaries
  • 4.2 Existence of the Solution of Integra-Differential Equations of Mixed Type
  • 4.3 Existence of Optimal Controls
  • 5 Nonlinear Impulsive Time-Varying Integro-Differential Equations of Mixed Type and Optimal Control
  • 5.1 Preliminaries
  • 5.2 Existence of the Solutions of Integro-Differential Equations of Mixed Type
  • 5.3 Existence of Optimal Controls
  • 6 Conclusions and Further Work
  • Acknowledgements
  • Bibliography
  • Publications
  • 相关论文文献

    本文来源: https://www.lw50.cn/article/eecdf7d507785c7a5326b8fe.html